
14/03/2020 10.3 — Aggregation | Learn C++

https://www.learncpp.com/cpp-tutorial/103-aggregation/ 1/8

10.3 — Aggregation
BY ALEX ON DECEMBER 7TH, 2007 | LAST MODIFIED BY ALEX ON JANUARY 23RD, 2020

In the previous lesson on Composition, we noted that object composition is the process of creating complex objects from
simpler one. We also talked about one type of object composition, called composition. In a composition relationship, the
whole object is responsible for the existence of the part.

In this lesson, we’ll take a look at the other subtype of object composition, called aggregation.

Aggregation

To qualify as an aggregation, a whole object and its parts must have the following relationship:

The part (member) is part of the object (class)
The part (member) can belong to more than one object (class) at a time
The part (member) does not have its existence managed by the object (class)
The part (member) does not know about the existence of the object (class)

Like a composition, an aggregation is still a part-whole relationship, where the parts are contained within the whole, and it
is a unidirectional relationship. However, unlike a composition, parts can belong to more than one object at a time, and
the whole object is not responsible for the existence and lifespan of the parts. When an aggregation is created, the
aggregation is not responsible for creating the parts. When an aggregation is destroyed, the aggregation is not
responsible for destroying the parts.

For example, consider the relationship between a person and their home address. In this example, for simplicity, we’ll say
every person has an address. However, that address can belong to more than one person at a time: for example, to both
you and your roommate or significant other. However, that address isn’t managed by the person -- the address probably
existed before the person got there, and will exist after the person is gone. Additionally, a person knows what address
they live at, but the addresses don’t know what people live there. Therefore, this is an aggregate relationship.

Alternatively, consider a car and an engine. A car engine is part of the car. And although the engine belongs to the car, it
can belong to other things as well, like the person who owns the car. The car is not responsible for the creation or
destruction of the engine. And while the car knows it has an engine (it has to in order to get anywhere) the engine doesn’t
know it’s part of the car.

When it comes to modeling physical objects, the use of the term “destroyed” can be a little dicey. One might argue, “If a
meteor fell out of the sky and crushed the car, wouldn’t the car parts all be destroyed too?” Yes, of course. But that’s the
fault of the meteor. The important point is that the car is not responsible for destruction of its parts (but an external force
might be).

We can say that aggregation models “has-a” relationships (a department has teachers, the car has an engine).

Similar to a composition, the parts of an aggregation can be singular or multiplicative.

Implementing aggregations

Because aggregations are similar to compositions in that they are both part-whole relationships, they are implemented
almost identically, and the difference between them is mostly semantic. In a composition, we typically add our parts to the
composition using normal member variables (or pointers where the allocation and deallocation process is handled by the
composition class).

In an aggregation, we also add parts as member variables. However, these member variables are typically either
references or pointers that are used to point at objects that have been created outside the scope of the class.
Consequently, an aggregation usually either takes the objects it is going to point to as constructor parameters, or it begins
empty and the subobjects are added later via access functions or operators.

https://www.learncpp.com/cpp-tutorial/102-composition/
Akhilesh


Akhilesh


Akhilesh


Akhilesh
The part can leave outside the object, even if object itself is destroyed.

Akhilesh
Unidirectional Relationship.
Only Object know about the part, not the other way round.

Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh




14/03/2020 10.3 — Aggregation | Learn C++

https://www.learncpp.com/cpp-tutorial/103-aggregation/ 2/8

Because these parts exist outside of the scope of the class, when the class is destroyed, the pointer or reference member
variable will be destroyed (but not deleted). Consequently, the parts themselves will still exist.

Let’s take a look at a Teacher and Department example in more detail. In this example, we’re going to make a couple of
simplifications: First, the department will only hold one teacher. Second, the teacher will be unaware of what department
they’re part of.

In this case, teacher is created independently of dept, and then passed into dept’s constructor. When dept is destroyed,
the m_teacher pointer is destroyed, but the teacher itself is not deleted, so it still exists until it is independently destroyed
later in main().

Pick the right relationship for what you’re modeling

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

#include <string>

#include <iostream>

 

class Teacher

{

private:

    std::string m_name;

 

public:

    Teacher(std::string name)

        : m_name(name)

    {

    }

 

    std::string getName() { return m_name; }

};

 

class Department

{

private:

    Teacher *m_teacher; // This dept holds only one teacher for simplicity, but it could hold 

many teachers

 

public:

    Department(Teacher *teacher = nullptr)

        : m_teacher(teacher)

    {

    }

};

 

int main()

{

    // Create a teacher outside the scope of the Department

    Teacher *teacher = new Teacher("Bob"); // create a teacher

    {

        // Create a department and use the constructor parameter to pass

        // the teacher to it.

        Department dept(teacher);

 

    } // dept goes out of scope here and is destroyed

 

    // Teacher still exists here because dept did not delete m_teacher

 

    std::cout << teacher->getName() << " still exists!";

 

    delete teacher;

 

    return 0;

}

Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh
Here, "Teacher" object is created as a member of main() function.

- "Teacher" objects exists even after it is passed to "Department" Constructor as a parameter and it is deleted by the main() function.

- This is a why it's an "Aggregation" relationship, and not a "Composition".



14/03/2020 10.3 — Aggregation | Learn C++

https://www.learncpp.com/cpp-tutorial/103-aggregation/ 3/8

Although it might seem a little silly in the above example that the Teacher’s don’t know what Department they’re working
for, that may be totally fine in the context of a given program. When you’re determining what kind of relationship to
implement, implement the simplest relationship that meets your needs, not the one that seems like it would fit best in a
real-life context.

For example, if you’re writing a body shop simulator, you may want to implement a car and engine as an aggregation, so
the engine can be removed and put on a shelf somewhere for later. However, if you’re writing a racing simulation, you
may want to implement a car and an engine as a composition, since the engine will never exist outside of the car in that
context.

Rule: Implement the simplest relationship type that meets the needs of your program, not what seems right in real-life.

Summarizing composition and aggregation

Compositions:

Typically use normal member variables
Can use pointer members if the class handles object allocation/deallocation itself
Responsible for creation/destruction of parts

Aggregations:

Typically use pointer or reference members that point to or reference objects that live outside the scope of the
aggregate class

Not responsible for creating/destroying parts

It is worth noting that the concepts of composition and aggregation are not mutually exclusive, and can be mixed freely
within the same class. It is entirely possible to write a class that is responsible for the creation/destruction of some parts
but not others. For example, our Department class could have a name and a Teacher. The name would probably be
added to the Department by composition, and would be created and destroyed with the Department. On the other hand,
the Teacher would be added to the department by aggregation, and created/destroyed independently.

While aggregations can be extremely useful, they are also potentially more dangerous. Because aggregations do not
handle deallocation of their parts, that is left up to an external party to do so. If the external party no longer has a pointer
or reference to the abandoned parts, or if it simply forgets to do the cleanup (assuming the class will handle that), then
memory will be leaked.

For this reason, compositions should be favored over aggregations.

A few warnings/errata

For a variety of historical and contextual reasons, unlike a composition, the definition of an aggregation is not precise -- so
you may see other reference material define it differently from the way we do. That’s fine, just be aware.

One final note: In the lesson Structs, we defined aggregate data types (such as structs and classes) as data types that
groups multiple variables together. You may also run across the term aggregate class in your C++ journeys, which is
defined as a struct or class that has no provided constructors, destructors, or overloaded assignment, has all public
members, and does not use inheritance -- essentially a plain-old-data struct. Despite the similarities in naming,
aggregates and aggregation are different and should not be confused.

Quiz time

1) Would you be more likely to implement the following as a composition or an aggregation?
1a) A ball that has a color
1b) An employer that is employing multiple people
1c) The departments in a university
1d) Your age
1e) A bag of marbles

https://www.learncpp.com/cpp-tutorial/47-structs/
Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh


Akhilesh




14/03/2020 10.3 — Aggregation | Learn C++

https://www.learncpp.com/cpp-tutorial/103-aggregation/ 4/8

Show Solution

2) Update the Teacher/Dept example so the Dept can handle multiple Teachers. The following code should execute:

This should print:

Department: Bob Frank Beth 
Bob still exists! 
Frank still exists! 
Beth still exists! 

Hint: Use a std::vector to hold the Teachers, and std::vector::push_back() to add Teachers.

Show Solution

 10.4 -- Association

 Index

 10.2 -- Composition

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

#include <iostream>

 

int main()

{

    // Create a teacher outside the scope of the Department

    Teacher *t1 = new Teacher("Bob"); // create a teacher

    Teacher *t2 = new Teacher("Frank");

    Teacher *t3 = new Teacher("Beth");

 

    {

        // Create a department and use the constructor parameter to pass

        // the teacher to it.

        Department dept; // create an empty Department

        dept.add(t1);

        dept.add(t2);

        dept.add(t3);

 

        std::cout << dept;

 

    } // dept goes out of scope here and is destroyed

 

    std::cout << t1->getName() << " still exists!\n";

    std::cout << t2->getName() << " still exists!\n";

    std::cout << t3->getName() << " still exists!\n";

 

    delete t1;

    delete t2;

    delete t3;

 

    return 0;

}

javascript:void(0)
javascript:void(0)
https://www.learncpp.com/cpp-tutorial/10-4-association/
https://www.learncpp.com/
https://www.learncpp.com/cpp-tutorial/102-composition/

