
14/03/2020 10.4 — Association | Learn C++

https://www.learncpp.com/cpp-tutorial/10-4-association/ 1/22

10.4 — Association
BY ALEX ON AUGUST 19TH, 2016 | LAST MODIFIED BY ALEX ON JANUARY 23RD, 2020

In the previous two lessons, we’ve looked at two types of object composition, composition and aggregation. Object
composition is used to model relationships where a complex object is built from one or more simpler objects (parts).

In this lesson, we’ll take a look at a weaker type of relationship between two otherwise unrelated objects, called an
association. Unlike object composition relationships, in an association, there is no implied whole/part relationship.

Association

To qualify as an association, an object and another object must have the following relationship:

The associated object (member) is otherwise unrelated to the object (class)
The associated object (member) can belong to more than one object (class) at a time
The associated object (member) does not have its existence managed by the object (class)
The associated object (member) may or may not know about the existence of the object (class)

Unlike a composition or aggregation, where the part is a part of the whole object, in an association, the associated object
is otherwise unrelated to the object. Just like an aggregation, the associated object can belong to multiple objects
simultaneously, and isn’t managed by those objects. However, unlike an aggregation, where the relationship is always
unidirectional, in an association, the relationship may be unidirectional or bidirectional (where the two objects are aware of
each other).

The relationship between doctors and patients is a great example of an association. The doctor clearly has a relationship
with his patients, but conceptually it’s not a part/whole (object composition) relationship. A doctor can see many patients
in a day, and a patient can see many doctors (perhaps they want a second opinion, or they are visiting different types of
doctors). Neither of the object’s lifespans are tied to the other.

We can say that association models as “uses-a” relationship. The doctor “uses” the patient (to earn income). The patient
uses the doctor (for whatever health purposes they need).

Implementing associations

Because associations are a broad type of relationship, they can be implemented in many different ways. However, most
often, associations are implemented using pointers, where the object points at the associated object.

In this example, we’ll implement a bi-directional Doctor/Patient relationship, since it makes sense for the Doctors to know
who their Patients are, and vice-versa.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

#include <iostream>

#include <string>

#include <vector>

// Since Doctor and Patient have a circular dependency, we're going to forward declare Patie

nt

class Patient;

class Doctor

{

private:

 std::string m_name{};

 std::vector<Patient *> m_patient{};

public:

 Doctor(std::string name) :

 m_name(name)

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

14/03/2020 10.4 — Association | Learn C++

https://www.learncpp.com/cpp-tutorial/10-4-association/ 2/22

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

 {

 }

 void addPatient(Patient *pat);

 // We'll implement this function below Patient since we need Patient to be defined at th

at point

 friend std::ostream& operator<<(std::ostream &out, const Doctor &doc);

 std::string getName() const { return m_name; }

};

class Patient

{

private:

 std::string m_name{};

 std::vector<Doctor *> m_doctor{}; // so that we can use it here

 // We're going to make addDoctor private because we don't want the public to use it.

 // They should use Doctor::addPatient() instead, which is publicly exposed

 void addDoctor(Doctor *doc)

 {

 m_doctor.push_back(doc);

 }

public:

 Patient(std::string name)

 : m_name(name)

 {

 }

 // We'll implement this function below Doctor since we need Doctor to be defined at that

point

 friend std::ostream& operator<<(std::ostream &out, const Patient &pat);

 std::string getName() const { return m_name; }

 // We'll friend Doctor::addPatient() so it can access the private function Patient::addD

octor()

 friend void Doctor::addPatient(Patient *pat);

};

void Doctor::addPatient(Patient *pat)

{

 // Our doctor will add this patient

 m_patient.push_back(pat);

 // and the patient will also add this doctor

 pat->addDoctor(this);

}

std::ostream& operator<<(std::ostream &out, const Doctor &doc)

{

 unsigned int length = doc.m_patient.size();

 if (length == 0)

 {

 out << doc.m_name << " has no patients right now";

 return out;

 }

 out << doc.m_name << " is seeing patients: ";

 for (unsigned int count = 0; count < length; ++count)

14/03/2020 10.4 — Association | Learn C++

https://www.learncpp.com/cpp-tutorial/10-4-association/ 3/22

This prints:

James is seeing patients: Dave
Scott is seeing patients: Dave Betsy
Dave is seeing doctors: James Scott
Frank has no doctors right now
Betsy is seeing doctors: Scott

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

 out << doc.m_patient[count]->getName() << ' ';

 return out;

}

std::ostream& operator<<(std::ostream &out, const Patient &pat)

{

 unsigned int length = pat.m_doctor.size();

 if (length == 0)

 {

 out << pat.getName() << " has no doctors right now";

 return out;

 }

 out << pat.m_name << " is seeing doctors: ";

 for (unsigned int count = 0; count < length; ++count)

 out << pat.m_doctor[count]->getName() << ' ';

 return out;

}

int main()

{

 // Create a Patient outside the scope of the Doctor

 Patient *p1 = new Patient("Dave");

 Patient *p2 = new Patient("Frank");

 Patient *p3 = new Patient("Betsy");

 Doctor *d1 = new Doctor("James");

 Doctor *d2 = new Doctor("Scott");

 d1->addPatient(p1);

 d2->addPatient(p1);

 d2->addPatient(p3);

 std::cout << *d1 << '\n';

 std::cout << *d2 << '\n';

 std::cout << *p1 << '\n';

 std::cout << *p2 << '\n';

 std::cout << *p3 << '\n';

 delete p1;

 delete p2;

 delete p3;

 delete d1;

 delete d2;

 return 0;

}

14/03/2020 10.4 — Association | Learn C++

https://www.learncpp.com/cpp-tutorial/10-4-association/ 4/22

In general, you should avoid bidirectional associations if a unidirectional one will do, as they add complexity and tend to
be harder to write without making errors.

Reflexive association

Sometimes objects may have a relationship with other objects of the same type. This is called a reflexive association. A
good example of a reflexive association is the relationship between a university course and its prerequisites (which are
also university courses).

Consider the simplified case where a Course can only have one prerequisite. We can do something like this:

This can lead to a chain of associations (a course has a prerequisite, which has a prerequisite, etc…)

Associations can be indirect

In all of the above cases, we’ve used a pointer to directly link objects together. However, in an association, this is not
strictly required. Any kind of data that allows you to link two objects together suffices. In the following example, we show
how a Driver class can have a unidirectional association with a Car without actually including a Car pointer member:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

#include <string>

class Course

{

private:

 std::string m_name;

 Course *m_prerequisite;

public:

 Course(std::string &name, Course *prerequisite=nullptr):

 m_name(name), m_prerequisite(prerequisite)

 {

 }

};

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

#include <iostream>

#include <string>

class Car

{

private:

 std::string m_name;

 int m_id;

public:

 Car(std::string name, int id)

 : m_name(name), m_id(id)

 {

 }

 std::string getName() { return m_name; }

 int getId() { return m_id; }

};

// Our CarLot is essentially just a static array of Cars and a lookup function to retrieve th

em.

// Because it's static, we don't need to allocate an object of type CarLot to use it

class CarLot

{

private:

 static Car s_carLot[4];

public:

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

14/03/2020 10.4 — Association | Learn C++

https://www.learncpp.com/cpp-tutorial/10-4-association/ 5/22

In the above example, we have a CarLot holding our cars. The Driver, who needs a car, doesn’t have a pointer to his Car
-- instead, he has the ID of the car, which we can use to get the Car from the CarLot when we need it.

In this particular example, doing things this way is kind of silly, since getting the Car out of the CarLot requires an
inefficient lookup (a pointer connecting the two is much faster). However, there are advantages to referencing things by a
unique ID instead of a pointer. For example, you can reference things that are not currently in memory (maybe they’re in a
file, or in a database, and can be loaded on demand). Also, pointers can take 4 or 8 bytes -- if space is at a premium and
the number of unique objects is fairly low, referencing them by an 8-bit or 16-bit integer can save lots of memory.

Composition vs aggregation vs association summary

Here’s a summary table to help you remember the difference between composition, aggregation, and association:

Property Composition Aggregation Association

Relationship type Whole/part Whole/part Otherwise unrelated

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

 CarLot() = delete; // Ensure we don't try to allocate a CarLot

 static Car* getCar(int id)

 {

 for (int count = 0; count < 4; ++count)

 if (s_carLot[count].getId() == id)

 return &(s_carLot[count]);

 return nullptr;

 }

};

Car CarLot::s_carLot[4] = { Car("Prius", 4), Car("Corolla", 17), Car("Accord", 84), Car("Matr

ix", 62) };

class Driver

{

private:

 std::string m_name;

 int m_carId; // we're associated with the Car by ID rather than pointer

public:

 Driver(std::string name, int carId)

 : m_name(name), m_carId(carId)

 {

 }

 std::string getName() { return m_name; }

 int getCarId() { return m_carId; }

};

int main()

{

 Driver d("Franz", 17); // Franz is driving the car with ID 17

 Car *car = CarLot::getCar(d.getCarId()); // Get that car from the car lot

 if (car)

 std::cout << d.getName() << " is driving a " << car->getName() << '\n';

 else

 std::cout << d.getName() << " couldn't find his car\n";

 return 0;

}

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

Akhilesh

14/03/2020 10.4 — Association | Learn C++

https://www.learncpp.com/cpp-tutorial/10-4-association/ 6/22

Members can belong to multiple classes No Yes Yes

Members existence managed by class Yes No No

Directionality Unidirectional Unidirectional Unidirectional or bidirectional

Relationship verb Part-of Has-a Uses-a

 10.5 -- Dependencies

 Index

 10.3 -- Aggregation

 C++ TUTORIAL | PRINT THIS POST

108 comments to 10.4 — Association

« Older Comments 1 2

kavin
March 9, 2020 at 7:15 am · Reply

In last example line 63,

why are we creating the object car as a pointer type, but not Driver d in line 61 ? Why are we creating a pointer object
without having a pointer member variable ?

nascardriver
March 10, 2020 at 9:18 am · Reply

`CarLot::getCar` potentially returns a `nullptr` (If there is no car with the given id). If we want to
store the return value of `CarLot::getCar`, we have to use a pointer.

The driver on the other hand is created by us. We're certain it exist.

David
January 24, 2020 at 10:32 pm · Reply

Hi,I don't understand the meaning "The associated object (member) is otherwise unrelated to the object
(class)".

Dose the meaning of "otherwise unrelated to the object" be the same with "unrelated to the object"?
Thanks for replying

nascardriver

1 Car *car = CarLot::getCar(d.getCarId()); // Get that car from the car lot

https://www.learncpp.com/cpp-tutorial/10-5-dependencies/
https://www.learncpp.com/
https://www.learncpp.com/cpp-tutorial/103-aggregation/
https://www.learncpp.com/category/cpp-tutorial/
https://www.learncpp.com/cpp-tutorial/10-4-association/print/
https://www.learncpp.com/cpp-tutorial/10-4-association/print/
https://www.learncpp.com/cpp-tutorial/10-4-association/comment-page-1/#comments
https://www.learncpp.com/cpp-tutorial/10-4-association/comment-page-1/#comments
https://www.learncpp.com/cpp-tutorial/10-4-association/comment-page-2/#comment-456659
https://www.learncpp.com/cpp-tutorial/10-4-association/comment-page-2/#comment-456726
https://www.learncpp.com/cpp-tutorial/10-4-association/comment-page-2/#comment-451408
Akhilesh

Akhilesh

Akhilesh

Akhilesh

