
Container and Kubernetes
Security: An Evaluation Guide

Your Definitive Resource for Protecting Containers,
Kubernetes Orchestrator, and Infrastructure

1

Table of Contents

Overview .. 2

Build Phase – Building Secure Images .. 4

Required Features and Functions: Building Secure Images ... 5

Deploy Phase – Hardening the Environment .. 6

Required Features and Functions: Hardening the Environment ... 7

Runtime Phase – Securing Running Containers ... 11

Key Elements of Securing Containers in Runtime ... 12

Required Features and Functions: Securing Containers in Runtime ... 13

Infrastructure Security .. 16

Required Features and Functions: Infrastructure Security .. 16

Container Security Platform Requirements ... 18

Required Features and Functions: Container Security Architecture .. 18

Conclusion ... 21

2

Overview

More and more organizations are transforming their businesses by embracing DevOps
principles, microservice design patterns, and container technologies such as Docker and
Kubernetes. While security teams have the same mission regardless of the technology
stack in use – keep the bad guys out and find and stop them if they do break in – the tools
and tactics security staff employ must change to accommodate this infrastructure shift.

Security remains the primary concern around enterprise container strategy. In a recent
survey1 of IT and security practitioners and decision makers, 35% of respondents identified
a lack of adequate investment in container security as their biggest concern relating to
their organization’s container strategy, with another 15% lamenting that their container
strategy doesn’t take security threats seriously.

Q. What is your biggest concern about your company’s container strategy?

The right container security solution can address these concerns by leveraging the
operational advantages of containers. Container runtimes and orchestrators have brought
new standard interfaces to the way applications are built, deployed, and operated. Security,
operations, and development teams can speak a common “language” using these
interfaces to gain greater insight into — and control over — security-critical configurations.
And, when something goes wrong, the same design patterns that allow containerized
applications to be resilient to infrastructure failure can be used to automate security
response.

1 The State of Container Security 2018 Report, StackRox with observations and analysis from CyberEdge Group

It doesn't take the
threat to

containers
seriously.

15%

It doesn't
adequately

invest in
container
security.

35%
It is too slow.

19%

It is too far-
fetched.

6%

It is not
detailed
enough.

25%

3

A successful container security program requires integrating security into each phase of
the container lifecycle: Build, Deploy, and Run.

• Build
The build phase centers on what ends up inside of the container images developers create. In the
build phase, security efforts are typically focused on reducing business risk later in the container
lifecycle by applying best practices and identifying and eliminating known vulnerabilities early.

• Deploy
Containerized applications are configured in the deploy phase. In this phase, context about images
can be combined with the rich variety of configuration options available for orchestrated services.
Security efforts in this phase often center around compliance with operational best practices, least-
privilege principles, and identifying misconfigurations to reduce the likelihood and impact of potential
compromises.

• Run
The runtime phase is when containers go into production with live data, live users, and exposure to
networks, internal or the public Internet. The primary purpose of security during the runtime phase is
protecting both running applications and the container infrastructure by finding and stopping
malicious actors in real time.

As critical as protecting containers across their life cycle is the need to ensure the
underlying infrastructure is properly configured. Containers can help organizations
implement finer-grained workload-level security, but they also introduce new infrastructure
components and unfamiliar attack surfaces. The right container security solution must help
secure the cluster infrastructure and orchestrator as well as the containerized applications
they run.

Finally, the right solution must integrate seamlessly into an organization’s architectural
plans, tools, and business workflows. Otherwise, the solution may negatively impact
business operations, lock the organization into specific technologies, or increase the
workload on already busy teams.

This guide outlines the most important security controls and capabilities that a solution
must provide to secure each phase of the container lifecycle, your Kubernetes orchestrator,
including clusters, nodes, container engines, and other infrastructure components, to
achieve effective overall security.

4

Build Phase – Building Secure Images

Container images specify the programs, tools, and components that will be available when
an application is deployed and run, as well as some important configurations. The makeup
of container images sets a security baseline as applications progress through the container
lifecycle.

Time and effort invested to reduce the attack surface in the build phase is well spent: the
earlier in the container lifecycle that organizations catch vulnerabilities, configuration
errors, and security policy violations, the lower the cost to the organization. It’s far more
efficient to mitigate a problem in a container image in the build stage than to respond to
the same issue in production. Similarly, fixing a problem in a widely used base image can
address security problems across multiple teams and applications.

An effective container security program seeks to remediate vulnerabilities and reduce the
attack surface before images ever leave the development sandbox. Because container
images are immutable and identified by their contents, security-relevant changes usually
need to be applied by the same development team and built using the same build process
that produced image. So, it’s best for security to “shift left” as far as possible rather than
instituting controls in later stages of deployment.

Vulnerability scanning is a key element of image security. Container security solutions
should assist teams in identifying fixable vulnerabilities and enable automated
enforcement to block new issues from being introduced. But too many solutions focus
primarily on vulnerability scanning – solutions must go far beyond this capability to protect
at the build phase. Container security solutions should asses compliance with other
security practices during the build phase. For instance, a security team might decide to
minimize the attack surface by requiring tools—like apt-get or curl—that are useful to
attackers not be included in final images.

Images also contain certain elements of runtime configuration, such as the program that
will execute, the user identity with which it will run, and a default set of environment
variables. Container security solutions should also be able to check these configurations for
compliance with organizational security policies.

5

Required Features and Functions: Building Secure Images

Feature / Function Why You Need This

IMAGE ASSESSMENT

Analyze image configuration settings to
detect issues, including Dockerfile
instructions used in the build, user identity
configurations, and environment variables

Vulnerability scanners identify known vulnerabilities in
packages but not risky practices. Analyzing image
configuration settings can detect additional security-
relevant weaknesses that a scanner will miss.

Identify vulnerabilities in image components Shipping images with vulnerable versions of dependencies
is an avoidable risk. Reporting known vulnerabilities early
in the container lifecycle helps avoid moving this risk into
production. Your security solution should support scanning
images for vulnerabilities to give you this information.

Gather data from existing scanners, including
those built into registries

If your organization has purchased a scanner, including a
registry-integrated scanner, your security solution should
maximize the value of that existing investment by using
data from it to gather enhanced security context.

Attribute vulnerabilities and configuration
problems to specific components and specific
image layers

Container images often are based on open-source or
corporate-standard base images. Vulnerabilities and other
issues in base image layers are often the responsibility of a
different team, so it’s important to be able to attribute
issues to those layers.

Specifically identify fixable vulnerabilities as
well as those that are not fixable to avoid
future alerts

In some cases, operating system distributors or open-
source maintainers may assess that a given vulnerability
does not apply or does not warrant a fix. Interrupting a
development team’s workflow over such an issue is not
productive if a fix is not readily available.

RESPONSE

Fail Continuous Integration (CI) builds for
severe issues

To effectively contain risk in the build phase, you need to
inject feedback during the development process as soon as
a problem is introduced. Failing a build informs developers
as quickly as possible.

Allow customized control over the conditions
that will fail a build

Overly aggressive blocking may cause teams to disable
security controls if violations are too costly or unrealistic to
remediate.

6

Deploy Phase – Hardening the Environment

Once you’ve built your images, the next step is to deploy them. To achieve security in
the deployment phase, you need to understand and manage risk factors including those
posed by:

• The contents of the images being deployed

• The configuration of individual containerized workloads

While default orchestrator and container engine settings provide a reasonable level of
security in some areas, other settings require specific configurations to lock them down.
The right container security solution should not only display violations of standard policies
but also provide the DevOps team with recommended changes to quickly correct
unnecessary risks or misconfigurations.

Individual workloads have rich configuration options that affect the security posture of the
application. To fully understand the risk posed by an application, you need to know:

• What it is (including information about the image, such as components or
vulnerabilities)

• Where it came from (including the registry and tag)

• How it’s deployed (including user identity, privilege level, and other configurations)

• What it can access (including secrets, volumes, and other infrastructure components
such as the host or orchestrator API)

• Whether it complies with your policies and security requirements

Only with all of this data can you get a full understanding of your risk posture, so you know
where to target remediation and hardening efforts. And only with checks and enforcement
on all of these attributes can you ensure that workloads are deployed securely.

Within a cluster, sensitive workloads should also be separated logically and physically.
Different groups of applications, and services with different security needs, should be
deployed in separate namespaces as a first level of isolation. The most sensitive workloads
should run on dedicated nodes so that less trusted workloads are not able to affect their
operation.

7

Required Features and Functions: Hardening the Environment

Feature/Function Why You Need This

WORKLOAD VISIBILITY

Deliver multi-factor risk rankings based on
how images are built and how deployments
are configured

The container image is an important starting point, but
the full picture of a service’s risk must take into
account key aspects of deployment configuration as
well.

These deployment attributes should be synthesized
into a risk ranking that accounts for:

• Violations of organizational security policies
and practices

• Image vulnerabilities

• Access to secrets, storage, and other
important resources

• Privileges and capabilities

• Network exposure settings

• Variety and number of components useful to
adversaries

Provide visibility into namespace isolation
practices

Namespaces are a key boundary for network policies,
orchestrator access control restrictions, and other
important security controls. Separating workloads into
namespaces can help contain attacks and limit the
impact of mistakes or destructive actions by authorized
users.

Discover vulnerabilities across the entire
container environment

To respond efficiently to vulnerabilities and exposures,
you need to be able to quickly view data across all of
your clusters.

Visualize network segmentation rules Orchestrators typically provide relatively open
networking between components — for instance,
Kubernetes by default allows every pod to contact
every other pod.

Network segmentation policies are a key security
control that can limit the ability of an attacker to move
laterally through a container environment.

8

Show external network exposures External network exposure opens services to a broader
pool of potential adversaries. Removing unnecessary
exposures can prevent exploits, especially when new
vulnerabilities emerge.

Provide visibility into use of secrets The container infrastructure can enforce access
controls to prevent secrets from being read by
unrelated deployments, but that step helps only if
deployments mount just the secrets they actually need.
Visibility into secrets helps you find this type of
unnecessary exposure and can expose other
weaknesses, such as short key lengths.

Provide visibility into the use and
configuration of persistent storage

Persistent storage is a key persistence vector in
otherwise ephemeral container environments.
Persistent storage may also store valuable, sensitive
data. For these reasons, a container security solution
should identify the use and configuration of persistent
storage.

Provide visibility into the use and
configuration of host mounts

Host mounts are another vector that adversaries use
to establish persistence or interfere with other
containers. Host mounts are sometimes
unintentionally writable or overbroad. A container
security solution should inform you about the use and
configuration of host mounts.

POLICY ASSESSMENTS

Assess privileges used by containers The capabilities, user identity, and privileges granted to
container processes can allow or block many security
risk vectors, and a container security solution should
examine these settings to minimize risk.

Assess image provenance, including
registries and other attributes

Your container security solution should help you
understand where the code in your environment was
deployed from and should provide controls that
prevent deployment from untrusted sources or
registries.

Ensure old—and potentially vulnerable—
images are not being used

Your security solution should include the age of images
in their risk profiling, since older images can contain
more vulnerabilities than fresher ones. Your solution
should be able to alert you when very old images are
deployed.

9

Assess image scan status before, during, and
after deployment

It’s important to enforce distinct policies based on last
vulnerability scan date because images that haven't
been scanned recently may contain vulnerabilities that
are discoverable but not yet reported for the image.

Assess resource requests and limits for
deployments

Deployments without resource limits can cause
availability issues for themselves or for neighboring
applications, especially if they are compromised and
used to run cryptocurrency miners or similar payloads.

Assess operational best practices, such as
labels and annotations or the use of the
“latest” tag

Workloads that don’t specify standard annotations or
labels are harder to understand, making it more
difficult to remediate security issues. Using tags like
“latest” increases the risk of new code being
accidentally deployed.

Deliver out-of-the-box policies detecting
common configuration problems, including:

• High-severity vulnerabilities

• Image scan age and other best
practices

• Abnormal privilege levels

• Security-relevant image
components, including package
managers and download tools

• Key vectors for adversary
persistence attempts, such as
sensitive host directory mounts

• Common bad practices, such as
distributing secrets in environment
variables

Configuration options evolve over time and may
require significant research to develop appropriately
specific and understandable policies. Look for out-of-
the-box policies in your security platform to help your
team initiate its security efforts. A solid base of pre-
built policies allows your team to instead focus on
building custom policies in areas they know best: your
applications and practices.

Enforce granular policies uniquely designed
to specific environments and their security
requirements

Different organizational policies may apply in different
environments; for example, production deployments
may be held to a higher standard than testing. Policies
may also need to be more restrictive for sensitive
deployments, such as those that process regulated
data. Your security solution must support this type of
scoping.

10

PROACTIVE HARDENING

Simulate or preview new network
segmentation policies and compare them to
runtime traffic

It can be difficult to understand the effects of network
policies, especially when multiple policies apply to
deployments in different ways. This difficulty can lead
to overbroad rules. YAML text files can also be hard to
decipher. Simulation and preview features make it
easier to write fine-grained segmentation rules and
visualize the network policy changes.

Automatically generate new network policies
based on observed traffic in runtime

It can be tedious to create adequate network policies,
especially when applications have long relied on an
open-by-default configuration. A container security
solution should generate new network policies based
on observed traffic in runtime.

RESPONSE

Automatically notify appropriate teams
based on deployment metadata

Many organizations annotate deployments with the
name, email alias, or Slack channel of the team
responsible for an application. The security solution
should be able to use this metadata effectively to
prevent security teams from having to manually triage
and forward alerts and findings.

Block deployments that violate policies The best way to ensure ongoing compliance with
policies is to prevent noncompliant workloads from
being deployed.

11

Build
26%

Deployment
30%

Runtime
44%

Runtime Phase – Securing Running Containers

Once container images are built and deployed into production, they are exposed to new
security challenges and a larger spectrum of adversaries. The goal of the security controls
instituted in the Build and Deploy phases is to minimize risk and prevent attacks, but your
security solution must also detect and respond to issues as containers run.

According to our survey report, a near majority of respondents indicate that securing the
runtime phase of the container life cycle is their greatest concern.

Q. Which life cycle phase are you more worried about from a security perspective?

In runtime, security efforts should focus on protecting both applications and infrastructure
and providing both visibility and detection features. A security solution must monitor the
most security-relevant container activities, including:

• Process activity

• Network communications among containerized services

• Network communications between containerized services and external clients and
servers

Container image and application deployment formats allow developers to better specify
their intent and enable easier introspection into what’s deployed. Effective container
security solutions must take into account the context accumulated during the Build and
Deploy phases of the container lifecycle to deliver more effective and accurate runtime
detection.

12

In addition, effective runtime security requires behavioral analysis of container runtime
activity using sophisticated techniques that establish risk, detect and respond to active
attacks, and track attack progression. Basic approaches including whitelisting, blocking, and
static log analysis are insufficient to detect and respond to advanced attacks.

Key Elements of Securing Containers in Runtime

• Visibility
Security practitioners have the upper hand when intruders can’t hide. An effective
security solution should identify the riskiest places to investigate and should give
security professionals effortless access to the data they need to understand the
container environment and respond to alerts.

• Continuous Monitoring
New vulnerabilities and exploit techniques appear every day, and security teams are
often tasked with finding these problems in running applications and coordinating
remediation efforts.

Your security solution must monitor for and discover new vulnerabilities in running
services and enforce custom policies specific to those services. If your security
solution evaluates policies only when images are first built and applications are first
deployed, you won’t be protected from these new vulnerabilities, exposures, and
attack vectors.

• Detection
Relying solely on blacklists for detection leaves you vulnerable to unknown attack
techniques. Meanwhile, overly broad whitelists can suppress true alerts. Relying
solely on this type of technique can leave a large amount of suspicious or malicious
behaviors undetected. Machine learning and automated correlation should be
paired with static rules to optimize detection efficacy.

Expert users should also be able to use visibility features to conduct investigations
and hunt for undiscovered threats.

• Response
Runtime detection events should be part of a feedback loop, prompting changes to
the way applications are built and deployed. It’s important to focus on responding
within the orchestrator and recommending corrective actions that cooperate with
the orchestrator and with immutable infrastructure principles. Security solutions

13

that make disruptive changes at runtime can interfere with DevOps teams’ intent,
leading to outages, downtime, or unexpected application behavior.

For instance, quarantining a container in runtime could leave the container only
partially operational. Containers should instead be replaced if they become
compromised – a hobbled container is hard for developers to troubleshoot. In
addition, the detection result should spur changes in the earlier phases of the
container lifecycle to prevent similarly susceptible containers from launching. Dev
and Ops should ultimately be responsible for fixing vulnerabilities; the security
product should gather the data that those teams need, contain the damage, and
recommend solutions — not interfere.

Required Features and Functions: Securing Containers in
Runtime

Feature/Function Why You Need This

CONTINUOUS MONITORING

Continuously assess all security policies,
even after applications are first deployed

Security and DevOps teams learn more about their
exposures over time. Checking policies once isn’t
enough — running deployments need to be continually
reassessed.

Monitor running deployments for newly
discovered vulnerabilities

Vulnerability data on running containers must be
continually updated rather than relying on a single
image vulnerability scan at a particular time. New
vulnerabilities may be disclosed publicly after
deployment, so images need to be periodically
rescanned, and any new results need to be included in
the risk score and context for the deployment.

VISIBILITY

Visualize active network traffic between
orchestrated microservices—organized by
cluster, namespace, and deployment

Microservices and containerized applications typically
make extensive use of cluster networking to cooperate
with other services. Active network traffic is a key way to
understand how applications are interacting and spot
unexpected contact.

14

Display all processes executed in
containerized deployments

Processes are an important indicator of security and
operations-relevant container activity. In containers, ad-
hoc process launches are less frequent and more
suspicious than they would be in other types of
infrastructure.

Compare and analyze different runtime
activity in pods of the same deployments

Containerized applications are replicated for high
availability, fault tolerance, or scale reasons. Replicas
should behave nearly identically; replicas with
significant deviations from the others could indicate
they’ve been compromised.

Enable searching of runtime activities and
deliver related deployments, violations, and
other resources

The same malicious or unwanted activity might affect
multiple deployments across different applications or
environments. Staff investigating a potential incident
need to quickly find those exposures.

Deliver deployment-focused views with
context from build, deploy, and runtime

Deployments are the most natural unit of organization
and are understood by teams responsible for different
parts of the container lifecycle. To easily understand a
runtime detection event or decide a hardening
improvement, security staff must have all of the context
about the workload’s activity, its configuration, and its
component images.

Provide support for threat hunting The container security system should conveniently
provide necessary actionable data for threat hunting.
Related capabilities include security alert details and
supporting information such as suspicious runtime
activity.

DETECTION

Define custom and granular policies based
on process name and arguments at runtime

Processes are an important indicator of security- and
operations-relevant container activity. Process names
and their arguments provide important visibility into a
container’s activity. And, even if an image includes non-
default aliases or renamed binaries, attackers will still
attempt to use well-known names.

Optionally restrict where runtime policies
apply

Different organizational policies may apply in different
environments; for example, production deployments
may be held to a higher standard than those built for
testing. Policies may also need to be more restrictive for
sensitive deployments, such as those that process
regulated data. Your security solution must support this
type of scoping.

15

Define custom policies that combine
runtime policies with attributes from build-
and deploy-time

Build- and deploy-time context, such as orchestrator
annotations or image details from scanners and
registries, can help security teams build more effective
and targeted policies. For example, images from public
registries might be less trusted, and interactive
debugging activities might be more restricted in
sensitive applications.

Deliver out-of-the-box policies for
attempted or successful:

• Privilege escalation

• Network reconnaissance

• Package installation

• Cryptocurrency mining

• Modification of host configuration

• Execution of reverse shells or other
remote access tools

• Data exfiltration

Certain container-specific attack techniques are not
obvious, and methods to detect them may require
research and validation. Look for out-of-the-box policies
in your security platform to help your team initiate its
security efforts. A solid base of pre-built policies allows
your team to instead focus on building custom policies
in areas they know best: your applications and
practices.

Detect unexpected activities that indicate an
adversary may be gaining a foothold,
establishing persistence, escalating
privilege, moving laterally, or achieving their
objectives

Adversary behaviors may not match a specific blacklist
item or known vector but should still be identified using
more sophisticated techniques that compare activity to
each application’s baseline.

RESPONSE

Automatically alert external systems (e.g.,
email, PagerDuty, Slack, Google Cloud SCC,
and SIEM systems) when a policy violation is
detected

The container security solution must be able to
immediately alert the right responders once an attack is
detected.

Provide custom tiered responses based on
severity of policy violations

Teams can be overwhelmed by, and begin to ignore,
noisy notifications. An effective security solution must
be able to tune which problems lead to which responses
to avoid alert fatigue.

Send notifications to the most relevant
teams based on orchestrator annotations or
other metadata

Many organizations annotate deployments with the
name, email alias, or Slack channel of the team
responsible for an application. The security solution
should be able to use this metadata to automate
feedback to the relevant development team so security
teams don’t have to manually triage and forward alerts
and findings.

16

Optionally contain attacks by automatically
instructing the orchestrator to replace
suspicious instances of running applications

Until the responsible team develops a countermeasure
to the underlying security exposure, any action that
slows the adversary is valuable.

Responses that leave individual containers partially
operational can interfere with application uptime and
are hard for developers to troubleshoot. Orchestrator-
native responses, such as killing and restarting a
container, avoid this pitfall and are more
understandable to operators.

Infrastructure Security

Security must extend beyond containers themselves to effectively protect container
environments. To achieve overall security in the deployment and runtime phases, you also
need to secure the cluster infrastructure. Your security solution should assess the security
posture of the underlying infrastructure at the cluster, node, and container engine level.

Some of these recommendations are included in community best practices, such as the CIS
Kubernetes Benchmark. Your security tool should be able to assess compliance with those
standards and bring additional unique security insights and recommendations.

Required Features and Functions: Infrastructure Security

Feature/Function Why You Need This

CLUSTER SECURITY

Ensure that important security features like
orchestrator API access controls are
activated and used

Leveraging the native security capabilities of the
cluster infrastructure helps ensure default workload
configurations are more secure.

Assess configurations of key system
components, such as the availability of
network segmentation.

Network segmentation rules isolate applications in
a cluster from each other and from external
services to reduce the blast radius of attacks.

17

Check that authentication and authorization
are configured securely

Properly configuring authentication and
authorization in a cluster lowers risk and ensures
malicious users or compromised applications have
limited impact.

NODE SECURITY

Assess important host-level configurations,
including:

• The way that key system services
are operated

• Implementation of host audit
logging

• Track these settings to enforce
corporate security policies and flag
any nodes that do not comply.

The physical or virtual nodes running your
containers are a fundamental component of the
infrastructure. Your security solution should give
your containers a secure base on which to run.

CONTAINER ENGINE SECURITY

Continuously evaluate the container
engine’s configuration, including important
attributes such as:

• The engine’s security patch level

• The unencrypted or insecure
registries allowed, if any

• The access restrictions on the
container engine API

• The default configurations for
launched containers

Each node runs a container engine, such as Docker
or containerd, that operates your applications. The
configuration of this container engine has
significant impact on the security of the containers
it creates. Many out-of-the-box settings are built to
make implementation easy, often defaulting to
more privileges and rights than necessary. It’s
critical to continuously evaluate the container
engine’s configurations and remediate instances of
misconfigurations.

Ensure compliance with standards such as
the CIS Docker Benchmark to ensure that
containerized workloads operate on top of a
secure foundation.

Standards such as the CIS Docker Benchmark are
created by the security community to identify
consensus-based best practices and standards that
help organizations improve their container security.
A container security solution must be able to assess
an organization’s compliance with these industry
benchmarks.

18

Container Security Platform Requirements

The ideal container security product will integrate seamlessly into an organization’s
deployment environments and future architectural plans, maximize the value of existing
tools, and enable key workflows.

Many organizations value the portability of Docker and Kubernetes and plan to deploy
containers in different environments. Some plan to use a variety of public cloud providers,
private data centers, and other infrastructure — including environments that are
disconnected from the Internet for security reasons. Even cloud-native companies may
plan to mix workloads between cloud providers or want to preserve the option to switch
later. The ideal container security solution should support all such architectures.

The container security solution must seamlessly integrate into the organization’s DevOps
practices and tools, including integration with CI/CD systems, deployment tools, container
registries, and other security products. Ideally, the container security solution will provide a
tight feedback loop to shift left, continuously providing guidance to developers and
operations teams. This feedback loop continually improves the overall container security
posture.

Finally, the security solution must enable the key workflows that security and DevOps
teams execute. Whether the organization needs to get a handle on what’s running in
containers, assure that container workloads are compliant with regulatory or industry
standards, identify hardening opportunities, or find and mitigate security issues, the
security solution must be ready to help.

Required Features and Functions: Container Security
Architecture

Feature/Function Why You Need This

DEPLOYMENT REQUIREMENTS

Deploy using standard formats such as
Kubernetes YAML files and Helm charts

Solutions that use standard orchestrator
deployment formats are more portable and more
easily fit into existing processes for cluster
creation and maintenance.

19

Support data collection in necessary
operating environments

The security solution must be able to deploy,
collect data, and execute key functions
throughout the secured infrastructure. Key
aspects of compatibility include the orchestrator
and version, the host operating system, and the
container engine in use.

Support self-contained operation without
Internet connectivity

Some environments may limit Internet
connectivity for security reasons or other
purposes. The security solution must be able to
operate in such environments. Any functions
dependent on remote services may also suffer if
connectivity is interrupted or the remote service
suffers downtime.

IMPORTANT INTEGRATIONS

Prefer native orchestrator capabilities to
ad-hoc solutions

The container ecosystem is constantly evolving,
and many important functions are being
implemented through standard interfaces such
as the Container Network Interface used in
Kubernetes. The security solution will work
reliably in more environments and interoperate
better with existing tooling if it uses standard,
portable interfaces.

Integrate with necessary Continuous
Integration (CI) build tools

It is significantly more efficient to solve an issue
earlier in the development process. Images
created through the CI process set a security
baseline for the rest of the container lifecycle.

Integrate with necessary container image
registries and scanners

Container image registries and scanners contain
useful security context that should be leveraged
to improve visibility, detection, and response.

Integrate with necessary enterprise
security tools (e.g., SIEM)

Enterprise security workflows often involve data
retention or alerting in a central system. The
container security solution should support this
mode of operation.

Integrate with necessary workflow tools Remediation work often requires changes from
development or operations teams. Notifications
and tasking through workflow tools such as Jira,
Slack, or email can eliminate delays, frustration,
and mistakes from manual triage.

20

KEY WORKFLOWS

Automatically discover assets,
configurations, and activities

The security solution should discover all relevant
data without manual intervention after it is
deployed. Any manual steps may lead to
oversights and gaps in awareness and protection.

Assess compliance with necessary internal
security policies, industry standards, and
regulatory requirements

Container infrastructure brings a new set of
security options and new components to secure.
The security solution must provide data and
explanation to help compliance and risk
professionals understand and successfully audit
these new environments.

Even if an organization is not subject to
regulatory requirements, compliance with
internal security policies using custom policy
rules, and industry best practices and standards
can make a big difference in security.

Identify opportunities to harden the
container infrastructure and workloads

Containers offer an array of security options, and
organizations can use them to implement very
fine-grained security controls. However, many of
these options are not secure by default, and
some are difficult to understand. The security
solution must proactively identify hardening
opportunities and explain them so that teams can
implement more secure configurations.

Provide extensive search capabilities
across container infrastructure (e.g.,
cluster, namespace, labels, CVE, image
contents, image name, image registry,
deployment name, configurations, secret
metadata, alert policy name)

To quickly identify vulnerable assets or
investigate exposures or attacks, you need
powerful, fast search that spans images,
deployments, clusters, and all related data.
Solutions that leave Build, Deploy, and Run data
separated leave defenders at a disadvantage.

Conclusion

As more businesses adopt container technologies, security teams have new adversary
models to combat and new infrastructure components to secure. Legacy security solutions
leave blind spots and conflict with the technologies and workflows DevOps teams use.
Security teams must adapt to this DevOps model to retain their edge in the container
world.

A successful organizational container security program must include the implementation of
key controls throughout the phases of the container lifecycle – Build, Deploy, and Run – as
well as in the underlying container infrastructure. The right container security solution
must provide all the critical features in these areas and must integrate seamlessly with the
organization’s infrastructure, tools, and workflows to deliver fine-grained security
throughout the cloud-native stack.

	Table of Contents
	Overview
	Q. What is your biggest concern about your company’s container strategy?
	Build Phase – Building Secure Images
	Required Features and Functions: Building Secure Images

	Deploy Phase – Hardening the Environment
	Required Features and Functions: Hardening the Environment

	Runtime Phase – Securing Running Containers
	Q. Which life cycle phase are you more worried about from a security perspective?
	Key Elements of Securing Containers in Runtime
	Required Features and Functions: Securing Containers in Runtime
	Infrastructure Security

	Required Features and Functions: Infrastructure Security
	Container Security Platform Requirements

	Required Features and Functions: Container Security Architecture

	Conclusion

